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Abstract

Firms employ a rich variety of pricing strategies whose implications for aggregate

price dynamics often diverge. This situation poses a challenge for macroeconomists in-

terested in bridging micro and macro price stickiness. In responding to this challenge,

we note that differences in macro price stickiness across pricing mechanisms can often

be traced back to price changes that are either triggered or cancelled by shocks. We

exploit observed micro price behavior to quantify the importance of this margin of ad-

justment for the response of inflation to shocks. Across a range of empirical exercises,

we find strong evidence that changes in the timing of price adjustments contribute

significantly to the flexibility of the aggregate price level.
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1 Introduction

Over the past decade, economists have devoted substantial efforts to documenting basic facts

about consumer micro price behavior, an endeavor made possible by the increased availability

of large datasets.1 A salient finding is that firms employ a rich variety of pricing strategies.

In some sectors, such as energy, air travel, or fresh produce, firms adjust prices frequently,

whereas in others, such as newspapers, health services, or maintenance activities, firms adjust

prices infrequently. Even at the level of universal product codes (UPC), researchers have

found variation across firms in the magnitude and frequency of price adjustments. And while

sales and promotions are a defining feature of the way items are marketed to consumers in

retail trade, temporary price discounts are uncommon in several other sectors.

Many macroeconomists had hoped that the new micro evidence would shorten the list

of pricing mechanisms used in macroeconomic applications by revealing which mechanisms

have empirical support and which ones do not. The variety of new micro facts has instead

stimulated researchers to introduce several new mechanisms and to refine existing ones.2

In retrospect, this outcome was probably unavoidable. As has long been recognized in the

field of industrial organization (e.g., Carlton [1989]), product markets differ along several

dimensions that influence pricing strategies. These dimensions include the number of buyers

and sellers, the degree of product homogeneity, the durability of items, the presence of long-

term relationships between buyers and sellers, the role of advertisement and information, the

firm’s price discrimination motives, and the ability to hold inventories. This heterogeneity

would be immaterial to macroeconomists if all pricing mechanisms implied similar effects of

aggregate shocks on inflation and output. Unfortunately, the choice of a particular mecha-

nism is often consequential in macroeconomic applications. For instance, models matching

the same average frequency and size of price changes can vary greatly in the speed of aggre-

gate shock pass-through (see Golosov and Lucas [2007] for an illustration). The variety of

facts and pricing mechanisms thus underscores the importance of identifying key features of

micro price behavior that are important for aggregate adjustment and that macro models

1Initial empirical work using sectoral data by Carlton (1986), Cecchetti (1986), Lach and Tsiddon (1992),

and Kashyap (1995) has been followed by the work on consumer prices of Bils and Klenow (2004), Baharad

and Eden (2004) for Israel, and several euro-area national studies summarized in Dhyne et al. (2005). For

recent literature surveys, see Mackowiak and Smets (2008) and Klenow and Malin (2011).
2The list of pricing strategies and relevant frictions includes menu-cost models (e.g., Barro [1972] and

Sheshinski and Weiss [1977]), the Calvo (1983) model, fixed-duration contracts (Taylor [1980]), infrequent

information (e.g., Mankiw and Reis [2002]), rational inattention (e.g., Sims [2003]), uncertain and sequential

trade (e.g., Eden [1994]), fair pricing (Rotemberg [2011]), price points (e.g., Levy et al. [2011]), search

models (e.g., Head et al. [forthcoming]), price plans (Burstein [2006] and Alvarez, Lippi, and Paciello

[2011]), reference prices (Eichenbaum, Jaimovich, and Rebelo [2011]), and price discrimination (e.g., Varian

[1980]).
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should aim to reproduce.

In this paper, we seek to connect micro and macro price stickiness by distinguishing

between price adjustments that are determined ahead of shocks and those that are either

triggered or cancelled by shocks. This distinction offers a natural way of contrasting popular

time-dependent models, for which the timing of all price changes is predetermined, and state-

dependent models, for which the timing of price changes can respond to shocks. In practice,

asserting whether a price adjustment is predetermined or not, or should have occurred when

it did not, is a challenging task. However, we argue that one can go a long way in deriving

the aggregate implications of micro price stickiness by focusing on the initial response to

aggregate shocks and by studying the determinants of individual price adjustments. The key

finding of our empirical implementation is that some shocks alter the timing of individual

price changes in ways that contribute significantly to the flexibility of the aggregate price

level. One immediate implication is that pricing models abstracting from variation in the

timing of price changes are missing an important channel of macroeconomic adjustment.

We formalize the distinction between predetermined price adjustments and those trig-

gered or cancelled by shocks using the generalized  model developed by Caballero and

Engel (1993a, 1993b, and 1999). The model is consistent with lumpy and infrequent price

adjustments, a key empirical feature that we seek to reproduce, and has the added benefit

of encompassing several pricing mechanisms commonly used in macroeconomic applications.

Following Caballero and Engel (2007, henceforth “CE”), we then decompose the initial in-

flation response to an aggregate shock as the sum of an intensive margin and an extensive

margin. The intensive margin captures the contribution of predetermined price adjustments

and is connected to the observed frequency of price changes. The extensive margin captures

the contribution of price adjustments that are triggered or cancelled by the shock. It is at

the heart of many debates about how item-level price stickiness translates into aggregate

price stickiness, and is the key statistic that our paper aims to quantify.

The extensive margin depends on what we call the individual reset price; that is, the

posted price that a firm would set if granted a one-time opportunity to adjust it for free,

with all constraints otherwise remaining in place (including the possibility that the posted

price will not change for some time). If individual reset prices were observed, one could assess

the role of the extensive margin by studying how deviations of posted prices from individual

reset prices are distributed and how these deviations influence price adjustment decisions.

However, partial identification is possible by noting that, in a broad class of models, firms

reveal their individual reset price whenever they adjust their posted price. The history of

price adjustments can therefore provide a benchmark for the path of individual reset prices.

Individual price changes can also reveal the amount of price pressure having accumulated
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between adjustment periods, making the distribution of price changes an informative object

about underlying inflation.

We next show how one can use variation in the shape of the distribution of nonzero

price changes to derive lower bounds on the importance of adjustment along the extensive

margin. If the timing of all price changes was predetermined, then an inflationary shock

would simply create additional price pressure on items. As a result, the distribution of

individual price changes would shift laterally by an amount equivalent to the extra pressure.

Our procedure compares the observed distribution to an estimate of the distribution that

would have prevailed in the absence of the shock. Any evidence that the two distributions

differ by more than a translation is attributed to the extensive margin. We apply our

procedure to the study of three macroeconomic shocks whose timing and size are rather

well identified: the sudden devaluation of the Mexican peso in late 1994 and the hikes in

the Mexican value-added tax (VAT) in April 1995 and January 2010. Our results point to

substantial price level flexibility that was due primarily to changes in the timing of price

adjustments.

The extensive margin can be especially important in the presence of a selection effect by

which items having accumulated much price pressure are especially likely to have the timing

of their adjustment altered by shocks. Such a selection effect was highlighted in the work

of Caplin and Spulber (1987) and Golosov and Lucas (2007), and later clarified in CE, as

the root of the lack of intrinsic persistence in standard menu-cost models. In the absence of

a selection effect, the accumulation of aggregate price pressure should lead to a rise in the

average size of individual price changes. To check whether this is the case empirically, we use

the massive repricing of items created by the Mexican VAT hike in April 1995 to compute the

distribution of consumer price changes in an environment dominated by aggregate reset price

inflation. We find no drift in the average price change even as large amounts of aggregate

reset price inflation accumulate, consistent with strong selectivity.

We find more direct support for a selection effect by studying how price adjustment

decisions relate to deviations from the price of local competitors, which we use as a proxy

for the individual reset price. We undertake this task using the IRI Marketing database, a

very large (and relatively new to macroeconomists) dataset of weekly scanner prices from

grocery stores and drugstores across the United States. The exceptional sample coverage

makes it possible to track prices of identical items across multiple competing outlets. We

follow Campbell and Eden (2010) in calculating the deviation from the average price of local

competitors at the UPC-market level. After accounting for permanent differences across

stores, we find somewhat limited dispersion in the level of prices within local markets. Some

of that dispersion is due to firms choosing prices away from those of their local competitors,
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which cautions against interpreting all forms of price dispersion as evidence of resource

misallocations. We also find support for an adjustment probability that increases in our

proxy of the (absolute) deviation. Like the limited price dispersion, this finding is consistent

with a selection effect. Finally, we use our estimates of the distribution of deviations and

of the probability of a price change conditional on the deviation to compute the extensive

margin directly from the micro data. This exercise again points to an economically important

role of changes in the timing of price adjustments for price level flexibility.

The paper is organized as follows. Section 2 presents our conceptual framework, highlights

the importance of price adjustments triggered or cancelled by shocks in connecting micro

and macro price stickiness, and discusses their identification. Section 3 proposes a method

for bounding the importance of the extensive margin and applies it to the study of three

macroeconomic shocks. Section 4 uncovers evidence of a selection effect in micro price

adjustment by first analyzing the distribution of price changes as price pressure builds up,

and then by estimating the adjustment hazard. Section 5 offers some concluding remarks.

2 Conceptual Framework

We use a variant of the generalized  model developed in a series of papers by Caballero

and Engel (1993a, 1993b, and 1999) to formalize the link between changes in the timing of

individual price adjustments and macro price flexibility. The main appeal of this sticky-price

framework is that it encompasses several pricing mechanisms commonly used in macroeco-

nomic applications and can incorporate real rigidities.

2.1 Economic Environment

We assume that time is discrete and that the length of the time intervals match that of price

collection. The economy is populated by a continuum of firms indexed by  ∈ [0 1]. Each firm
produces a single item sold directly to consumers. Due to the presence of nominal rigidities,

the posted price, , may deviate from the target price, 
∗
, between price adjustment periods

(all prices are in natural logs). The object ∗ corresponds to the posted price chosen by

a firm granted a one-time opportunity to adjust it freely, with all constraints otherwise

remaining in place, including the possibility that the new price may be sticky in subsequent

periods. In choosing ∗, the firm takes into account how today’s posted price impacts

profitability in the current and future periods; therefore, it generally differs from the price

that maximizes current-period profits.3 We will refer to ∗ as the firm’s individual reset

3The concept of a price that maximizes current-period profits –either in a partial equilibrium or in

a frictionless general equilibrium environment– and the concept of a price that maximizes the present
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price. Our terminology highlights the connection between ∗ and the posted price chosen

by the firm when resetting it. It also ties in with the idea of aggregate reset price inflation

studied by Bils, Klenow, and Malin (forthcoming), who recover the component of innovations

to individual reset prices that is common across items under specific pricing assumptions.

Because the individual reset price is a forward-looking object, it can be a complicated

function of how the economy is expected to evolve over time, and how that evolution im-

pacts future price adjustment decisions. In our benchmark specification, we assume that

innovations to ∗ are described by

∆∗ = ∗ +  (1)

where ∗ is aggregate reset price inflation and  is a mean-zero idiosyncratic component

that is  across firms and over time. Our specification of  introduces a random-walk

element in individual reset prices. We make no particular assumption regarding the process

describing the aggregate component of individual reset prices, except that its innovations, ∗ ,

are common across items. For consistency, we also impose that firms share the same price-

setting mechanism, to be described shortly. These simplifying assumptions are unlikely to

hold in reality. For instance, differences in price stickiness, real rigidities, or item durability

can lead to heterogenous responses to aggregate shocks.4 We partially address this concern

in our empirical implementation by considering relatively homogenous groups of products.

The decision to change the posted price is made after observing the shocks and aggregate

variables in the period. We define the deviation from the individual reset price as  =

−1−∗, where −1 is the firm’s posted price inherited from the previous period. Following
CE, we postulate that the probability of observing a price change is a time-invariant smooth

function of the deviation from the individual reset price, Λ (), called the “adjustment

hazard function.” The model gives rise to infrequent and lumpy price adjustments, which is

a central feature of consumer price data that we seek to reproduce.5

One appealing aspect of postulating a smooth adjustment hazard function is that forecast-

ing individual price adjustments is typically a difficult task, as periods marked by frequent

price changes are sometimes followed by long spells of inaction (and vice-versa) with no ap-

parent change in economic conditions. The adjustment hazard captures this randomness by

discounted stream of profits at times overlap in the work of Caballero and Engel. In a menu-cost model,

these concepts coincide when innovations to the frictionless optimal price follows a random walk with no

drift and firms set prices under certainty equivalence. Departure from either of these assumptions breaks

the equivalence between the two concepts.
4Barsky, House, and Kimball (2007) and Gopinath and Itskhoki (2010) highlight this heterogeneity in

the presence of differences in durability and the degree of real rigidities, respectively.
5Woodford (2008 and 2009) provides micro-foundations for a smooth adjustment hazard increasing in the

absolute size of the deviation.
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leaving some uncertainty regarding the timing of adjustments. Its dependence on  allows

for the possibility that large deviations, which are suboptimal from the point of view of profit

maximization, are more likely than small ones to trigger price adjustments. The function

can also embed asymmetries in the response to positive and negative deviations that some

authors argue could play a role in explaining apparent differences in the response of aggre-

gate inflation to positive and negative shocks (e.g., Caballero and Engel [1993b]). In what

follows, we treat the adjustment hazard as a function of  alone. All results carry through

if we instead consider Λ ( ), where  is a vector of idiosyncratic states that influence

the adjustment probability but otherwise have no impact on how a firm’s individual reset

price responds to an aggregate shock (e.g., month-specific and duration-specific dummies

capturing seasonal patterns and duration dependence, respectively).6

2.2 Price Adjustment along the Intensive and the Extensive Mar-

gins

Given the above assumptions, consumer price inflation can be expressed as

 = −
Z

Λ ()  ()  (2)

where  () is the density of deviations from individual reset prices prevailing at the begin-

ning of period . Consider the impact on inflation of an aggregate shock to ∗ taking place

immediately before price adjustment decisions. For now, we assume that the shock, ∆, is

fully passed through to individual reset prices, thus ruling out real rigidities. We shall return

to the implications of real rigidities shortly. The shock shifts the distribution of deviations

from individual reset prices by −∆, resulting in observed inflation

 (∆) = −
Z
(−∆)Λ (−∆)  ()  (3)

6In theory, the adjustment hazard could depend on aggregate conditions beyond their influence on .

Most notably, Sheshinski and Weiss (1977) prove that the width of the  band increases with steady-

state inflation in a menu-cost model without idiosyncratic shocks. This effect is much weaker in models

with idiosyncratic shocks, however, consistent with the empirical evidence. Gagnon (2009) reports that the

average absolute size of price adjustments was little impacted by the burst in inflation that accompanied the

Mexican Peso crisis. Similarly, Wulfsberg (2009) uncovers no apparent change in the absolute size of price

adjustments in Norway as trend inflation fell from around 10 percent in the mid-1970s to 2 percent in the

mid-1990s. Both studies note a rise in the average absolute size since the late 1990s but it is difficult to

attribute this rise to changing aggregate conditions.
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Taking a first-order Taylor series expansion of  (∆) around ∆ = 0, rearranging terms,

and taking the limit as ∆→ 0, one obtains


 = lim

∆→0
∆

∆
=

Z
Λ ()  () | {z }

intensive margin (A)

+

Z
Λ0 ()  () | {z }

extensive margin (E)

 (4)

The above statistic captures the share of an (infinitesimal) aggregate shock to individual reset

prices passed-through to posted prices upon impact. CE refer to this object as the index of

macroeconomic flexibility, which they denote 
 . This index has two components. The

intensive margin, A, captures the contribution of items whose posted price would have been

adjusted absent the shock. These items respond to the shock by altering the size of their price

adjustment. The extensive margin, E, captures the inflation contribution of items whose
price adjustment is either triggered or cancelled by the occurrence of the shock, as hinted by

the presence of Λ0 ().7

We note several aspects of equation (4) that are useful in understanding the nature

of the two margins and in assessing their empirical importance. First, the intensive and

the extensive margins are functions of deviations from individual reset prices, which are

typically unobserved. Under the assumptions made thus far, however, firms reveal their

individual reset price whenever they adjust their posted price. Moreover, the size of price

changes corresponds to the amount of price pressure that has cumulated since the last price

adjustment. We call these two implications of our framework the revelation principle. This

principle will play a central role in our empirical strategy, which is laid out in section 3.

Second, the intensive margin has a strong connection to observables. To see this, notice

that integrating the adjustment hazard over the distribution of deviations gives the observed

frequency of price changes. In low-inflation environments, the fraction of adjusting prices

typically does not vary much due to offsetting movements in the number of price increases

and price decreases (see Klenow and Kryvtsov [2008] and Gagnon [2009]). For these envi-

ronments, the average frequency of price changes, , offers a reasonable approximation of

7It should be noted that CE’s usage of the terms “intensive” and “extensive” margins differs from that

popularized by Klenow and Kryvtsov (2008). The latter define the extensive margin as the frequency of

price changes and the intensive margin as the average size of (nonzero) price changes. These definitions

are motivated by Klenow and Kryvtsov’s investigation of how variation in the number of prices changes

contributes to inflation dynamics. In contrast with these authors, who seek to explain the level of inflation,

CE are only interested in the boost to inflation due to the aggregate shock. And while the extensive margin

in Klenow and Kryvtsov’s decomposition is a function of all price changes, the extensive margin in equation

(4) depends only on the subset whose timing is altered by the shock. For example, a shock resulting in the

simultaneous cancelling of a price decrease and triggering of a price increase would impact inflation solely

through the intensive margin under Klenow and Kryvtsov’s decomposition because it leaves the number of

price adjustments unchanged. The same shock would instead operate entirely through the extensive margin

under CE’s decomposition. To avoid any confusion, our terminology follows exclusively that of CE.
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the intensive margin, A. Appendix B provides estimates of the average frequency of price

changes for the U.S. CPI and IRI Marketing scanner database. The extensive margin is more

difficult to relate to observables because disentangling items whose price adjustment is either

triggered or cancelled by the shock from items whose price adjustment is predetermined is a

challenging task. That said, in section 3, we will show how one can use changes in the shape

of the distribution of price changes to bound its macroeconomic importance.

Third, the decomposition offers an intuitive way of distinguishing between popular time-

dependent models, for which the timing of all price changes is predetermined, and state-

dependent models, for which the timing of price changes can be impacted by shocks. In

time-dependent models such as the popular Calvo (1983) model and fixed-duration contracts

(Taylor 1980), by construction 
 = . More generally, the frequency of price changes

is a lower bound on the index of macroeconomic flexibility because the extensive margin is

typically positive.

Fourth, there need not be many price changes triggered or cancelled by a shock for the

extensive margin to be a major contributor to the inflation response. In the presence of a

selection effect by which items with much price pressure are especially likely to have their

adjustment either triggered or cancelled by the shock, a small number of items revising the

timing of their price adjustment can have a large impact on inflation. For example, if a

1-percent shock to ∗ induces a firm to raise its price by 10 percent rather than keep it

constant (thus releasing pressure accumulated from a variety of sources since its last price

adjustment), then the impact of that single price change on inflation will be as large as that

of 10 predetermined price changes increasing their size by an extra percentage point. Caplin

and Spulber (1987) and Golosov and Lucas (2007) trace the lack of intrinsic persistence in

standard menu-cost models to this selection effect.

Fifth, the shape of the distribution of deviations, (), also affects the magnitude of the

selection effect. If  () is large in regions where || is large and the adjustment hazard is
steep, then the extensive margin will be important. That said, identifying the distribution

of deviations over time can be challenging due to its dependence on the history of shocks,

especially in periods of elevated macroeconomic instability. To circumvent this difficulty, our

analysis refrains from characterizing the full dynamic process of inflation, focusing instead

on the initial response to shocks for which a reasonable estimate of () can be computed.

Finally, equation (4) was derived for an infinitesimal shock ∆. In the data, large

shocks are not only the easiest to identify but also the most likely to alter the timing of price

changes. Inference about the relative importance for shock pass-through of price changes

that are predetermined versus those that are triggered or cancelled may thus depend on the

magnitude of the shock. One can decompose the initial pass-through to a shock of arbitrary
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size as
∆

∆
= A + E + O (k∆k)  (5)

where O (k∆k) is the sum, scaled by ∆, of all terms of order two or higher in the

Taylor-series expansion of  (∆) around ∆ = 0. The terms A and E are as defined in
equation (4). In particular, the intensive margin is the frequency of price changes that would

have been observed in the absence of the shock. The term O (k∆k) converges to zero as
∆ → 0. Importantly, it equals zero whenever all price adjustments are predetermined.

For this reason, our empirical implementation of equation (5) using observed shocks, which

is presented in section 3.1, lumps together E and O (k∆k). We will refer to any price
movement that contributes to E or O (k∆k) as an adjustment along the extensive margin.

2.3 The Revelation Principle and the Distribution of Price Changes

Under the revelation principle, individual reset prices are observed whenever posted prices

are adjusted. For example, Bils and Klenow (2004) report an average frequency of price

changes of 26 percent in the U.S. CPI in the mid-1990s. Applying the principle to these

data implies that ∗ is observed about a quarter of the time. The revelation principle also

leads to new interpretations of the distribution of price changes. For items experiencing a

price adjustment, we have ∆ = −. The distribution of price changes thus maps into
the distribution of deviations from individual reset prices that prevailed for price adjusters.

Alternatively, ∆ equals the cumulative change in the individual reset price since the

last nominal adjustment. Hence, for a firm changing its posted price after keeping it constant

for  periods, ∆ = ∗ − ∗− . As such, the distribution of price changes can be used to

extract information on how price pressure builds over time at the item level. For instance,

one can condition this distribution on the number of periods since the last price adjustment

(we use this approach in section 4). These observations suggest that the distribution of price

changes is a richly informative object and that replicating it in macro models is a key step

towards ensuring consistency with microeconomic facts.8

These interpretations come with some qualifications. First, Chevalier and Kashyap (2011)

present empirical evidence that the price of competing brands may be jointly determined by

retailers, so that it may be difficult to analyze individual price decisions separately from those

of their close substitutes. Second, there could be environments in which both the timing

8See Eden (2001) for an early investigation of how the shape of the distribution of consumer price changes

differs between low and high inflation. For U.S. evidence on consumer prices, see Klenow and Kryvtsov

(2008), Klenow and Malin (2011), and Berger and Vavra (2011). Calibrations to the distribution of price

changes have appeared recently in the literature (e.g., Midrigan [2011] and Costain and Nakov [2011])
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and size of price adjustments are predetermined; for example, if firms followed price plans or

pre-announced price changes. Price adjustments that do not coincide with a reoptimization

obscure the inference about the set of firms adjusting their posted prices in response to

shocks. That said, there is limited support for widespread use of pre-announcements, at

least at the retail level, and of price plans by firms. Fabiani et al. (2006) report that

price reviews are more common than price changes among European firms. Alvarez, Lippi,

and Paciello (2011) argue that adjusting prices without reoptimizing them is a suboptimal

strategy in low-inflation environments. Finally, the individual reset price may not be unique;

for instance, when firms follow mixed pricing strategies.9 For all situations described above,

the revelation principle does not hold with the consequence that individual price changes

need not equal the amount of price pressure having accrued since the last adjustment.

2.4 Real Rigidities

We have so far abstracted from real rigidities, which dampen the response of individual

reset prices to nominal shocks. Several authors have argued that real rigidities are essential

for sticky-price models to generate the observed inertia in aggregate inflation and output.10

Attempts to infer their importance from micro price data have yielded mixed results.11 We

will not seek to reconcile the micro and macro evidence on real rigidities, but simply stress

that key properties of equation (4) extend to environments where they are present. To this

end, we follow CE in assuming that aggregate reset price inflation is described as

∗ = (1− )∆ +  (6)

The parameter  controls the extent to which firms trade-off raising their price in line with

the price of their competitors versus matching the rate of money growth, ∆. This money

growth term should be interpreted as standing for a host of nominal shocks impacting ∗ ,

such as nominal wages or the nominal exchange rate. The elasticity  is an index of real

rigidities; the smaller is , the faster the response of individual reset prices to the aggregate

shock. The process described by equation (6) should not be seen as a general description of

9A multiplicity of optimal prices can arise when the profit function is very flat because firms trade-off the

unit markup and the number of consumer purchases. See Eden’s (1994) model of uncertain and sequential

trade and the search model of Head et al. (forthcoming).
10See Blanchard and Fisher (1989) and Ball and Romer (1990) for early expositions. Christiano, Eichen-

baum, and Evans (2005), and Smets and Wouters (2007) argue, as do many others, that the inclusion of real

rigidities in DSGE models improves their ability to account for observed aggregate economic dynamics.
11Bils, Klenow, and Malin (forthcoming) note that CPI inflation since the turn of the 1990s is too volatile

and transient to be explained by standard sticky-price models, even absent real rigidities. Burstein and

Hellwig (2007) and Gopinath and Itskhoki (2011) find moderate amount of real rigidities in retail prices and

trade prices respectively, but the accompanying macroeconomic effects are limited.
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∗ but as a local approximation taken at a particular point in time.
12

As stated in CE, the presence of real rigidities makes the index of macroeconomic flexi-

bility a nonlinear function of the intensive and extensive margins,


 = lim

∆→0
∆

∆
=
(1− ) (A + E)
1−  (A + E)  (7)

This function is strictly increasing in A + E, is bounded between 0 and 1 whenever A +

E ∈ (0 1), and is decreasing in the extent of real rigidities (i.e., 


∆
∆

 0).13 Hence, the

main implication of real rigidities is that they dampen the transmission of the shock to

individual reset prices. The initial shift in the distribution of deviations from individual

reset prices that accompanies a shock ∆ is now

∆∗ =

µ
1− 

1−  (A + E)
¶
∆

which is less than∆ wheneverA+E is less than 1. Importantly for our empirical analysis,
the revelation principle continues to hold: Individual reset prices are revealed through price

adjustments and the size of price changes corresponds to the price pressure accumulated

since the previous adjustment. Moreover, as was the case in our baseline framework without

real rigidities, the extensive margin may add substantially to the flexibility of the price level.

3 Extensive Margin Adjustment to Large Shocks

Our first strategy to assess the importance of adjustment along the extensive margin stems

from the following observation: If the timing of all price changes was predetermined, then the

initial impact of a shock to ∗ would be to shift the distribution of individual price changes

laterally by the size of the shock. Aside from this translation, the shape of the distribution

would be preserved. One can thus measure the importance of adjustment along the exten-

sive margin by comparing the observed distribution of price changes to an estimate of the

distribution that would have been observed in the absence of the shock (the “counterfactual

distribution”). Although this counterfactual distribution is not observed, one can often infer

12Burstein and Hellwig (2007) provide microfoundations for the reduced-form parameter . In their en-

vironment, firms have a CES demand function with elasticity , use production functions with decreasing

returns in labor of the form  =  ()

, and face nominal wages determined by  = ()

1−
()


. Their

linearlized solution around the frictionless steady-state has  = 1− 1−
+− .

13While intuitive, this latter property does not hold in all environments. Dotsey and King (2005) present

an example in which an increase in real rigidities raises the flexibility of the price level. In their menu-cost

model, the negative impact on 
 of an increase in  is more than offset by the positive impact of a rise

in A + E as more firms find it profitable to incur the fixed cost of adjusting prices.
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its shape by considering the distribution that prevailed prior to the shock. This section

formalizes these ideas and then applies them to the study of the Mexican peso collapse in

late 1994 and to the Mexican VAT hikes of April 1995 and January 2010.

3.1 Inference from the Distribution of Price Changes

Let  (·) and ̃ (·) be measures representing the observed and counterfactual distributions
of price changes, respectively. These measures have a mass point at 0 corresponding to

the fraction of items whose price is unchanged. They are otherwise equal to the density of

individual price changes. Suppose that an observable shock ∆ raises all individual reset

prices by ∆∗ upon impact. We can rewrite observed inflation from equation (3) as

 = −
Z
(−∆∗ ) Λ (−∆∗ )  ()  =

Z
∆  (∆) 

The above equality uses the revelation principle to connect deviations from individual reset

prices to observed price adjustments. Absent the shock, inflation would have been

̃ =

Z
∆ ̃ (∆) 

The difference between  and ̃ is the initial boost to inflation attributable to the shock,

∆. Adding and subtracting the inflation contribution of predetermined price changes,R
∆∗ ̃ (∆) = f ∆∗ , performing a change of variable, and reorganizing terms, we

get
∆

∆
=f ∆∗

∆
+

1

∆

Z
∆ ( (∆)− ̃ (∆ −∆∗ ))  (8)

The first and second terms on the right-hand side capture the contribution to the index

of macroeconomic flexibility of adjustment along the intensive and the extensive margin,

respectively. The shock initially shifts the distribution of predetermined price changes by

∆∗ , resulting in a boost to inflation of f ∆∗ . The shock may also trigger or cancel

price adjustments, in which case the observed distribution of price changes will differ from

the counterfactual distribution shifted by ∆∗ . Our decomposition attributes any such

difference to an adjustment along the extensive margin.

If we knew∆∗ , then computing the contribution of adjustment along each margin would

be straightforward given an estimate of the counterfactual distribution. Absent knowledge of

∗ , we can nevertheless compute bounds on the importance of adjustment along the extensive

margin. We pursue two strategies to achieve this objective.

First, in our “full-pass-through” approach, we assume full immediate pass-through of
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the shock to individual reset prices (∆∗∆ = 1), thus ruling out real rigidities. With

estimates of ∆∆ and f in hand, we then compute the contribution of adjustment
along the extensive margin in equation (8) as a residual. To see how this approach provides

a lower bound, note that given ∆∆ and f, the larger is ∆∗∆, the larger will be

the importance of adjustment along the intensive margin. Assuming full immediate pass-

through to ∗ of the shock thus minimizes the importance of adjustment along the extensive

margin.

In our second approach, we assume that price adjustments triggered or cancelled by

the shock are not subject to a selection effect. In such a case, the initial impact of the

shock is to shift the counterfactual distribution of price changes by ∆∗ and to scale it by

a factor f. This situation is similar to what would happen in a Calvo model in which
the probability of price adjustment, while exogenous to the firm, varies with the state of

the economy. For this reason, and to highlight the model-dependence of this computation,

we refer to this approach as “Calvo+.” In the absence of the shock, inflation would be

given by ̃ = f f, where f is the average size of nonzero price changes. Following
a shock ∆, and absent real rigidities, the average nonzero price change would increase

by ∆ and the frequency of price changes would rise to , so that inflation would equal

 = 

³f +∆
´
. The boost to inflation due to the shock can be written as

∆ =f ∆ +
³
 −f´³f +∆

´
 (9)

Given the observed and the counterfactual distribution of price changes (i.e., with knowledge

of , f,f, and ∆), one can recover ∆ and the respective contributions to ∆∆

of adjustment along the intensive and the extensive margins.

The approaches described above to recover the importance of adjustment along the ex-

tensive margin are applicable to the study of the initial response to well-identified aggregate

shocks. More generally, one may wonder whether observed price behavior can be used to

recover a time series of aggregate reset price inflation and of the importance of adjustment

along the extensive margin. In appendix C, we illustrate the challenges of doing so using a

related method proposed by Bils, Klenow, and Malin (forthcoming).

3.2 The Late-1994 Peso Devaluation

Prior to the collapse of the peso in late 1994, Mexico was operating under a crawling peg

system in which the exchange rate acted as the economy’s de facto nominal anchor. Facing

escalating pressure on its foreign exchange reserves, the government announced a 15-percent

devaluation of the currency on December 19, 1994. The measure proved insufficient and
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was abandoned three days later in favor of a free-floating system. A week after the initial

devaluation, the exchange rate had lost about 40 percent of its value vis-à-vis the U.S.

dollar. Annualized inflation, which had hovered around 7 percent in 1994, jumped to more

than 40 percent in early 1995. The devaluation is a particularly interesting shock because it

was broadly unexpected and its timing is clear. Moreover, its occurrence late in December

means that the price of most items in the CPI had already been collected for that month.

The upper panel of figure 1 shows the distribution of monthly price changes observed in

January 1995 along with the distribution that prevailed 12 months earlier, which we use as

our counterfactual distribution.14 We do not depict the mass points at zero because they do

not contribute to inflation. The fraction of nonzero price changes doubled from 249 percent

in January 1994 to 507 percent in January 1995, pointing to a major role of the extensive

margin in the adjustment to the macro shock. The actual distribution lost some of its

mass of negative price changes relative to the counterfactual, especially in the −10 percent
to 0 percent range, while gaining significantly more mass on the positive side. The jump

in the frequency of price changes was observed across all major groups of products and is

perhaps clearest among product categories whose frequencies were initially low to moderate.

Processed food and nonenergy industrial goods witnessed increases in the frequency of price

changes of 30 percentage points or more. The distribution for unprocessed food, with its

pre-shock frequency of price changes around 40 percent, already featured an important role

for the intensive margin as a large number of price changes were predetermined. The arrival

of the shock pushed the frequency up to about 55 percent.

We compute our two sets of lower bounds to gauge the importance of adjustment along

the extensive margin. The first bound posits full immediate pass-through of the nominal ex-

change rate devaluation, ∆, to the price of imported final consumption items and imported

intermediate inputs going into the production of final consumption items. If there are no

real rigidities, the change in the optimal reset prices is ∆∗ =  ·∆, where  measures the

importance of imports in the consumption basket. Based on input-output tables, Burstein,

Eichenbaum, and Rebelo (2005) estimate the total import content of Mexican consumption

expenditures around that period to be 109 percent (and a direct import content only half as

large), a figure reflecting Mexico’s low openness at the time. Setting  = 0109 and ∆ = 05

(roughly the peso depreciation in the month that followed its collapse), we get that individ-

ual reset prices should have jumped 5 percentage points under full pass through. The second

bound is based on equation (9).

14We use the distribution of price changes 12 months earlier as our counterfactual to account for seasonal

repricing, which is especially noticeable for services in January. The results are broadly similar when we

perform the analysis using the distribution observed in the fourth quarter of 1994 as the counterfactual.
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As seen in table 2, both approaches suggest that adjustment along the extensive mar-

gin was the dominant channel. Under the full-pass-through method, the extensive margin

accounts for over two thirds of the initial price level response. The Calvo+ method pro-

vides a similar lower bound (63 percent). Table 2 also provides estimates by special groups

of product using the same value of . With the exception of unprocessed food, all special

groups of items suggest contributions of the extensive margin in excess of 75 percent. The

relatively small share for unprocessed food likely reflects the initially high frequency of price

changes (384 percent) which, all else equal, tends to boost the role of the intensive margin.

In addition, the import content of unprocessed food items may have been higher than 109

percent, which would tend to raise the lower bound on the extensive margin. Finally, we

note that the shape of the actual distributions of price changes displayed in figure 1 appears

inconsistent with the random selection of items whose price change is triggered by the shock.

In particular, the positive skewness increased following the shock, which is suggestive of a

role for the selection effect in the extensive margin, contrary to the assumption behind the

Calvo+ method.

Our full-pass-through method assumed that the devaluation was the only shock to indi-

vidual reset prices in late 1994. However, the rise in the price level in 1995 was much larger

than implied by the devaluation alone, hinting that other factors also pushed up individual

reset prices. Some of these factors arguably had limited impact initially. Notably, monetary

policy was tight in early 1995 as the central bank pushed up overnight rates to contain the

outflow of capital. In addition, labor costs did not accelerate until late 1995. Also consistent

with a somewhat moderate initial response of individual reset prices is the change in inflation

expectations. According to a survey of private forecasters conducted by the Bank of Mex-

ico (reported by Capistrán and López-Moctezuma [2010]), respondents surveyed in January

and February 1995 expected consumer prices to rise 25 percent over the course of the year,

roughly half the observed increase that year but significantly more than the 7 percent rise

experienced in the twelve months to December 1994. As an alternative gauge of the amount

of price pressure, we recomputed our bounds assuming that the initial shock to reset prices

was 18 percentage points. This alternative scenario, also reported in table 2, implies that

almost a third of the shock was passed-through to prices upon impact, with the extensive

margin making a significant contribution in most groups of products.

To put our bound estimates into perspective, recall that the extensive margin is zero

whenever the timing of all price adjustments is predetermined. The working paper version

of CE further shows that, as a rule of thumb, the extensive margin approximately accounts for

two-third of the index of macroeconomic flexibility in models featuring a smooth adjustment

hazard that is increasing in the (absolute) size of deviations and is zero if no price pressure
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is present. Our bound estimates derived from the revision to inflation forecasts are an

intermediate case between these two benchmarks, whereas our bounds obtained under full

exchange rate pass-through are aligned with CE’s rule of thumb.

On a related note, micro price studies have documented the presence of seasonal patterns

in the timing of consumer price adjustments for many product categories. Several authors

(e.g., Dhyne et al. [2005]) have associated such patterns to features of time-dependent

pricing models and to fixed-duration contracts in particular. However, a preference for

implementing price changes at particular times of the year needs not imply that the timing

of price changes is exogenous to the firm. The behavior of services prices in the wake of

the peso crisis illustrates this point. From 1995 to 2000, a quarter of these prices were

adjusted every January, a figure almost twice as large as in other months of the year (13

percent). As the inflationary consequences of the peso crisis drew to an end, the January

frequency of price changes stepped down to below 15 percent in 2001 and stayed near that

level thereafter. This step down offers further evidence that the number of firms adjusting

their price is responsive to aggregate conditions, consistent with an economically important

role of adjustment along the extensive margin.

3.3 Hikes in the Mexican Value-Added Tax

Changes in VAT are relatively simple to study because their timing and size are observed by

economic agents. Mexican firms must include the VAT and mandated duties in their posted

prices. Changes in VAT affect effective mark-ups over costs, creating an incentive for price

adjustments. About a third of items in the Mexican CPI excluding housing rents are subject

to either the VAT or special duties. Exempt items include most education services, food

at home excluding beverages, patented drugs, and books and periodicals. Items subject to

special duties include gasoline, phone lines, tobacco products, and alcoholic beverages. The

most recent VAT hike occurred on January 1, 2010, when the rate rose by one percentage

point throughout Mexico. This shock was much smaller than the devaluation and thus less

likely to present strong nonlinear effects (i.e., O (k∆k) in equation (5) is likely small).
Firms had a few price collection periods to prepare for its implementation. The VAT hike

also coincided with a rise in special duties on a few products. Amore substantial 5-percentage

point hike took place amid the peso crisis on April 1, 1995, when the Mexican government,

faced with an urgent need for revenues, increased the rate from 10 to 15 percent. Its large

size aside, two features make the 1995 hike particularly interesting. First, it was decreed

on March 18, giving retailers little notice before its enactment. Second, firms located in the

touristic regions of Baja California and Quintana Roo, and within a narrow corridor along
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the country’s southern and northern international borders, were exempt from the hike. We

will use these regions as a control group to analyze the impact of the hike.

Figures 2 and 3 show the observed distributions of price changes associated with the

January 2010 and April 1995 VAT hikes, respectively. For the 2010 hike, our counterfactual

distribution is the average density of price changes in the month of January during the years

2003 to 2007. For the 1995 hike, our counterfactual distribution is the one that prevailed

that month in regions not subject to the increase. This regional difference approach helps

control for macroeconomic shocks other than the VAT hike that likely influenced pricing

decisions at the time, notably the sharp contraction in economic activity.

For both hikes, we find strong responses of the frequency of price changes. Price changes

among taxable items were twice as frequent in January 2010 (385 percent) than in January

of 2003 to 2007 (average of 179 percent). In April 1995, 756 percent of taxable items in

regions subject to the hike experienced a price adjustment, compared to 480 percent in

regions exempt from the hike. As is apparent from figures 2 and 3, a large proportion of

price changes clustered around 1 percent in 2010 and 5 percent in 1995. Many firms also

seized the opportunity to raise prices by more than the hike, providing evidence that price

pressure from other sources was being released in the process. Note that these relatively

large price adjustments triggered by the shock are especially important contributors to the

initial pass-through. For items exempted from the VAT hikes, such as food products, the

observed and counterfactual distributions of price changes had similar shape during both

VAT hike episodes.

Under the assumption of full immediate pass-through of the VAT hike, the price of

taxable items should have risen 090 percent in 2010 and 445 percent in 1995. As reported

in table 3, the observed rate of inflation for taxable items in 2010 was 065 percentage point

higher than the counterfactual rate, consistent with an index of macroeconomic flexibility of

about 75 percent. The initial pass-through rate was especially high for taxable nonenergy

industrial goods (836 percent) but only about a third for taxable services. The difference

in inflation for taxable items in April 1995 between regions subject to and exempt from

the hike is consistent with a somewhat lower index of 628 percent. However, this estimate

likely understates the initial pass-through rate in April 1995. Inflation was running higher

in exempt regions in early 1995, consistent with border regions experiencing greater price

pressure from the devaluation. If we add the inflation differential for non-taxable items

observed in April 1995 to the inflation response of taxable items, then we obtain an initial

pass-through rate closer to 80 percent.

Table 3 also reports lower bounds on the relative importance of adjustment along the

extensive margin. For the 2010 hike, the full-pass-through method suggests that at least
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three quarters of the observed jump in∆ was attributable to adjustment along the extensive

margin, a finding that holds for both goods and services. The corresponding lower bounds for

1995 are noticeably smaller at about a quarter or less. This result is unsurprising in light of

the high frequency of price changes under the counterfactual scenario, which implies that the

timing of a large number of price adjustments was determined ahead of the tax hike. These

results offer an interesting contrast between the sources of adjustment to the two VAT hikes.

While both episodes shared similar degrees of initial pass-through, price adjustment in the

low-inflation environment of 2010 operated to a greater extent via the extensive margin–

despite a smaller shock–than in the high-inflation environment of 1995.15

We also note that several implications of the Calvo+ lower bound method are counter-

intuitive. Absent a selection effect, ∆ is revealed by the difference between the observed

and counterfactual average (nonzero) price change. This difference was negative for some

groups of products, notably services, following the VAT hikes, leading to the unappealing

implication that the shock was deflationary. And for categories with positive estimates of

∆, we sometimes find that the index of macroeconomic flexibility is greater than one. Such

an overshooting is at odds with the data because we find no evidence of inflation payback

(or, for that matter, continued pass-through) in the months that followed the hikes. We

interpret these counterintuitive implications as the data rejecting the absence of selection

effects in the response to the VAT hike, as posited by the Calvo+ approach.

4 Some Evidence of a Selection Effect

Adjustment along the extensive margin could be especially relevant for macro price stickiness

if items with large deviations from their individual reset price are more likely than others

to have the timing of their price adjustment altered by shocks. This section first documents

indirect manifestations of such a selection effect on the observed distribution of price changes,

and then attempts a more direct assessment by studying how a firm’s pricing decisions relate

to those of its local competitors.

4.1 Price Pressure and the Distribution of Price Changes

One consequence of the presence of a selection effect is that the distribution of deviations

should remain relatively compact. This observation has testable implications for the shape

of the distribution of nonzero price changes. Absent a selection effect, the size of (nonzero)

15Our Mexican sample does not allow us to explore asymetries in price adjustments to VAT increases

and decreases. Karadi and Reiff (2010) report greater pass-through for VAT hikes than for VAT cuts in

Hungarian data.
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individual price changes should equal, on average, the amount of aggregate reset price infla-

tion having accrued since the last adjustment. Also, absent a selection effect, the dispersion

of individual price changes should rise as idiosyncratic shocks pile up. The data provide

little empirical support for either phenomenon.

We use the massive repricing of items associated with the April 1995 Mexican VAT hike

to look for a drift in the mean price change conditional on the number of periods since the

last adjustment (a statistic called the “duration” or the “age of the price” in the literature).

Although we do not observe aggregate reset price inflation directly, we know that it was

substantial at the time because price adjustments were frequent and the CPI rose 40 percent

in the 12 months that followed the hike. We consider only items that experienced a price

change in April 1995, so that any pressure on individual reset prices stemming from the VAT

hike and other sources should have been released that month. We then look at the first price

adjustment that followed the hike conditional on the duration of the price. For example,

the 3-month-duration distribution uses only items that experienced a price change in April

1995 and had their next price change in July 1995. Such a conditioning ensures that items

have similar degrees of cumulated aggregate reset price inflation given the timing of their

first price adjustment following the VAT hike.

As figure 4 shows, the distributions of price changes are remarkably similar across dura-

tions. For all special groups of products considered, we find no apparent rise in the mean

nonzero price change in the first six months following the hike. For instance, the average price

change among nonenergy industrial goods was roughly 10 percent whether items had their

first adjustment one month, three months, or six months after the VAT hike. The rise in the

price index of nonenergy industrial goods differed much over these horizons, however, at 7

percent after one month and at almost 20 percent after six months. Our findings are similar

for other groups of products. A related observation is that the average price change taking

place shortly after the VAT hike is larger than the amount of cumulated inflation, whereas

the average price change taking place several periods after the VAT hike is smaller than the

amount of cumulated inflation. This behavior is consistent with early price changers having

initially more price pressure to release than others in the sample due to idiosyncratic factors,

and late price changers initially benefiting from an offsetting of aggregate reset price inflation

by idiosyncratic shocks, thus limiting the extent of the deviation from their individual reset

price.

To gauge the degree of similarity across the distributions at various durations, we compute

Kolmogorov-Smirnov statistics to test the hypothesis that the samples of nonzero price

changes used to compute the distributions at various durations are drawn from the same

population. In the vast majority of cases, we cannot reject at the 5-percent significance
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level that pairs of the distributions shown in figure 4 are statistically different.16 One may

suspect that the absence of rejection is due to the low power of the Kolmogorov-Smirnov test,

especially given that the number of usable observations declines rapidly with the duration

considered. However, the test would have easily rejected the null of no difference in nearly

all cases if the mean of the distributions had drifted by the amount of cumulated inflation.

Low-inflation environments arguably provide better conditions to identify any drift in the

dispersion of nonzero price changes as idiosyncratic shocks accumulate. Figure 5 presents

the distributions in the U.S. consumer prices for four special groups of products. We find no

obvious increase in the dispersion of price changes as a function of duration, consistent with

a selection effect limiting the size of price adjustments as idiosyncratic shocks accumulate. If

anything, some groups of products display a small decrease in the dispersion of price changes

conditional on the duration. Arguably, our distributions do not control for heterogeneity in

price-setting practices, which could imply, for example, that items with relatively elevated

idiosyncratic noise choose to reprice more often than those facing less volatility. Nevertheless,

the findings are consistent with that reported by Campbell and Eden (2010) and Klenow

and Kryvtsov (2008), who control for such heterogeneity.

4.2 Local Competition and the Adjustment Hazard

We next investigate how an item’s price adjustment probability relates to the deviation from

its individual reset price. An immediate difficulty in pursuing this objective is that the devi-

ation is typically not observed unless there is a price adjustment. There are two approaches

in the literature for dealing with this hurdle. The first approach is to parametrize the shape

of the adjustment hazard to target moments of some aggregate variables of interest (e.g.,

Caballero and Engel [1993a and 1993b]). It has the benefit of not requiring the identifica-

tion of individual reset prices but comes at the cost of ignoring rich micro data information.

The second approach, which we follow below, is to proxy the deviation using information

from observables. This approach has notably been employed to study car purchase deci-

sions by Eberly (1994) and Attanasio (2000), and hiring decisions by Caballero, Engel, and

Haltiwanger (1997).

Applications of this latter approach to the study of pricing decisions have been con-

strained by the lack of micro data that can be used to proxy individual reset prices. We

note two exceptions. Using weekly scanner data from a large U.S. retailer, Eichenbaum,

16The Kolmogorov-Smirnov test assumes equal weights on the observations used to construct the distribu-

tions, whereas our distributions weigh observations according to their relative spending share in the sample.

Given that our objective is largely illustrative, we calculate the test statistics as if all observations had the

same weight.
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Jaimovich, and Rebelo (2011) show that the probability of observing a change in an item’s

“reference” price (defined as the modal price in the quarter) is increasing in the deviation

from the average mark-up over the vendor cost (measured at the UPC-store level). Their

estimates imply a potent selection effect: a 5-percentage-point increase in the deviation from

the average markup raises the probability of adjusting the reference price during a given week

by over 10 percentage points. A related finding is that deviations from the average markup

are small, with 90 percent of items having an absolute deviation of 10 percentage points or

less.

The other notable exception, which we follow below, is Campbell and Eden (2010), who

use weekly scanner data from two small Midwestern cities. They report that the probability

of observing a price change is increasing in the deviation between an item’s price and the

average price of local competitors selling the same UPC. A rationale for their approach is that

individual reset prices, when measured at the UPC-market level, may comove strongly due

to similarities in costs and the degree of local competition. Indeed, we will provide evidence

of limited dispersion in the level of prices across stores. There are also limitations to this

approach. Deviations from the average price of local competitors abstract from idiosyncratic

factors influencing individual reset prices. And even if firms shared the same individual reset

price, the deviation may imperfectly proxy for the actual amount of price pressure because

the average price of local competitors only gradually reflects common shocks due to nominal

rigidities.

4.2.1 Proxying for the Deviation

We use the SymphonyIRI Marketing dataset to investigate pricing decisions and local com-

petition. As appendix A details, this dataset contains UPC-level information on weekly sales

and prices of U.S. grocery stores and drug stores. It allows us to control for the geographic lo-

cation and to identify stores belonging to the same retail chain. The sample size is unusually

large at about 300 billion individual price observations per year. The dataset covers staple

food (e.g., carbonated beverages, condiments, and cereals) and personal care products (e.g.,

toilet paper and laundry detergent). We converted the price series to a monthly frequency,

as explained in appendix A.

To construct an estimate of the deviation, we follow Campbell and Eden (2010) in defining

the average price of store ’s local competitors in month ,

̄− =
X
6=

− 

The weight − is the share of total UPC sales by item ’s local competitors that is
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accounted for by store  on a yearly basis. We then compute the deviation from ̄−
prevailing at the beginning of the period, ̂ = −1− ̄−. There could be factors leading

to permanent differences in the level of prices across stores, even conditioning on the UPC

and market. For example, the Chicago-area grocery chain Dominick’s Finer Foods uses a

four-tier system to set the level of prices across its stores in order to account for differences

in consumer price sensitivity and the degree of local competition. For this reason, we use

demeaned time series of the deviation unless otherwise indicated.

As section 2.3 mentions, only price adjustments coinciding with a reoptimization should

be comprised in the intensive and the extensive margins. Accordingly, in addition to using

posted prices, we consider a “regular” price series excluding one-month temporary price

drops and a “reference” price series computed as the modal posted price observed during

a 13-week period centered around the 15th day of the month. Our objective is not to

dismiss sales and nonreference prices as channels for the transmission of shocks. On the

contrary, there is mounting evidence that these prices are responsive to aggregate conditions,

although the extent of this response remains the subject of ongoing debate.17 Instead, we

use these alternative price series to provide statistics under a wider range of assumptions

regarding the set of price adjustments coinciding with a reoptimization. Appendix A details

the construction of these series.

4.2.2 Local Price Dispersion and the Nonparametric Adjustment Hazard

We first use our estimates ̂ to document the importance of dispersion in the level of

prices across stores at the UPC-market level.18 We sort ̂ from all UPCs and markets

with sufficient observations into 1-percentage-point bins, pooling together observations from

all months. The distributions weigh equally all UPC-market combinations. As a first step,

observations for a UPC-market combination are also weighted uniformly to highlight price

dispersion across stores. The upper panel of figure 6 shows the resulting distributions of

deviations for posted, regular, and reference prices before demeaning ̂. The distributions

are clearly skewed to the right of zero: About 10 percent of observations for posted prices

and regular prices have ̂  0, a proportion that doubles to 20 percent for reference prices.

The explanation for this skewness is that total UPC sales within local markets tend to be

dominated by a small number of stores with relatively low prices. The distributions also have

17See Klenow and Malin (2011) for a recent survey and several new facts, and Chevalier and Kashyap

(2011) for evidence that multi-product retailers may adjust the frequency and intensity of sales in response

to aggregate shocks.
18Consistent with the CE decomposition, ̃ measures the deviation before an item’s price adjustment

decision, whereas previous studies of price dispersion (e.g., Reinsdorf 1994) focus on the deviation after

price adjustments take place. The shape of the distributions is little changed when we adopt this alternative

timing.
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a relatively high density at or near zero due to some UPC-market combinations displaying

little if any dispersion in the level of prices.19 The lower panel of figure 6 reports the

distributions after demeaning ̂ by its average over time. These distributions are relatively

tight, which suggests that fluctuations in the level of prices are somewhat limited once one

accounts for permanent differences across stores.

We note at the outset that some of the observed price dispersion is not due to nominal

rigidities hampering price adjustment in response to shocks, but is rather traced back to

firms’ own pricing decisions. The upper panel of figure 7 illustrates this fact by showing how

prices at the edges of the distribution tend to be relatively young. The average age of posted,

regular, and reference prices peaks near 5 months, 6 months, and 10 months, respectively, for

̂ near zero. The average age then falls steadily as we consider increasingly large absolute

deviations from the average price of local competitors. In the case of posted and regular

prices, the average age of items with an absolute deviation around 20 percent is roughly 40

percent smaller than that of items with a deviation near zero. The relative age difference is

even larger for reference prices. These findings are consistent with those of Campbell and

Eden (2010), though obtained with a much larger sample, and caution against associating

all forms of price dispersion with resource misallocation. Consequently, we will take this

feature of the data into account in our subsequent analysis.

The middle panel of figure 7 plots the nonparametric adjustment hazard, Λ̂ (̂), obtained

by computing the price change frequency for each 1-percentage point bin. Unsurprisingly,

Λ̂ (̂) is highest for posted prices, which are relatively flexible, and lowest for reference

prices, which are relatively sticky. More importantly and consistent with the presence of

a selection effect, Λ̂ (̂) is increasing in the absolute deviation from the average price of

local competitors. One may suspect that this phenomenon is driven by temporary sales

and promotions, which can cause posted prices to be temporarily located on the edges of

the distribution of deviations. However, the V shape is preserved when we exclude sales

and nonreference price changes. For instance, the probability of observing a reference price

change leaps from 7 percent when the item’s price equals the average reference price of its

local competitors, to between 20 percent and 30 percent when its (absolute) deviation reaches

20 percent.

The bottom panel of figure 7 shows that the median firm adjusts its reference price by the

full size of its price gap vis-à-vis local competitors (i.e., ∆ ≈ −̂). A similar conclusion
holds for posted prices and regular prices (not shown). That said, there is some heterogeneity

19The spike near zero diminishes when we increase the minimum number of stores required for a UPC-

market combination to be included in the sample or when exclude stores belonging to the same chain as

store  from the calculation of ̄−. Our central finding of limited price dispersion remains, however.
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in the size of price changes conditional on ̂, as evidenced by the 10th and 90th percentile

lines reported in the panel. This variation suggests that, while ̂ is a roughly unbiased

estimate of the actual deviation, , it misses other factors influencing individual reset

prices.

Figures 8 and 9 provide some evidence that the shape of Λ̂ (̂) is robust to alterations

to our baseline methodology. First, it retains its V shape when we compute it for narrower

product categories, as illustrated in figure 8 for salty snacks, carbonated beverages, cold

cereal, and frozen dinners. Second, we allow for the possibility that pricing decisions are

made at the chain level rather than at the store level by excluding stores belonging to the

same chain as retailer  from the computation of ̄−. The upper panel of figure 9 shows that

the resulting adjustment hazard is only a bit flatter than our benchmark case for reference

prices. The findings are qualitatively similar for posted prices and regular prices when we

control for chains (not shown). Third, figure 9 also presents the nonparametric adjustment

hazard obtained when the deviation is constructed using only the average price of the local

competitors that have reset their price over the previous six months. In this case, Λ̂ (̂)

is a bit steeper than in our benchmark case. Finally, the lower panel of figure 9 reports

Λ̂ (̂) conditional on the age of the price. While the V shape is preserved at all durations

considered, the level of the estimated adjustment hazard declines with the age of the price,

consistent with negative duration dependence in the data.

4.2.3 Parametric Estimation of the Adjustment Hazard

The nonparametric nature of our analysis so far has precluded us from controlling for various

factors that could affect the shape of the adjustment hazard function, such as seasonal repric-

ing and a selection bias by which items with large deviations are drawn from UPC-market

combinations with relatively flexible prices. To assess whether these elements impact our

findings, in particular the V shape of the adjustment hazard, we estimate linear probability

models with item fixed effects in the spirit of Campbell and Eden (2010). We focus on

reference prices to further limit the risk that sales, promotions, and other transitory price

movements bias our estimate of Λ (), and UPC-store fixed effects are also included. Our

specification is

(∆ 6=0) = 0 + 
neg
1 ̂

neg
 + 

pos
1 ̂

pos
 + Γ0  + 

where (∆ 6=0) is an indicator variable that item ’s price has changed, ̂
neg
 is ̂ whenever

̂  0 and zero otherwise, ̂
pos
 is similarly defined for positive deviations, and  is a

vector of control variables that include period dummies, the age of the price, and a measure
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of store size (total yearly revenues). ̂
neg
 and ̂

pos
 allow the adjustment hazard to have

different slopes for negative and positive deviations. We also considered higher-order terms

but their economic significance was minimal. We cluster the standard errors at the store level

and, given the expansive size of the IRI Marketing dataset, run the regressions at the product

category-market level. We only include in our sample items from UPC-market combinations

that have at least 10 observations.

The first three columns of table 4 display the estimated coefficients for three product

category-market combinations: salty snacks in New York City, carbonated beverages in Los

Angeles, and frozen dinners in Boston. All slope coefficients are statistically significant and

increasing in the (absolute) size of positive and negative deviations. In addition, the slopes

are comparable in magnitude to those obtained in our nonparametric exercise. As was the

case earlier, the results point to a steeper adjustment hazard for negative deviations than

positive ones, suggesting that relatively low prices are especially unlikely to persist for long.20

We also ran regressions with duration-specific dummies to determine whether the shape

of the adjustment hazard is driven by young prices. The results reported in table 5 show that

this is not the case. The coefficients on the duration-specific dummies are economically small

and often not statistically significant, indicating that the age of prices is not an important

determinant of the slope of the adjustment hazard function. The lack of any improvement

in the goodness of fit relative to the benchmark regressions in table 4 is consistent with this

conclusion.

4.2.4 Local Competition and the Index of Macroeconomic Flexibility

Our benchmark nonparametric hazard has proven robust to controlling for several elements

unrelated to the selection effect that could influence its slope. Consistent with the limited

amount of price dispersion across stores shown in figure 6, we see our regression results as

evidence that the timing of pricing decisions is sensitive to deviations from individual reset

prices, and that adjustment along the extensive margin may play a role at the macroeconomic

level. If we believe that the deviation from the price of local competitors (̂) and our

estimate Λ̂ (̂) are good proxies for the deviation from the actual individual reset price

() and adjustment hazard function (Λ ()), respectively, then we have all the elements

needed to estimate the intensive and the extensive margins in equation 4 directly on the

micro data. Specifically, the intensive margin can be obtained by integrating Λ̂ (̂) over

the distribution of ̂, and the extensive margin can be recovered by integrating the product

20We also ran separate regressions for price increases and price decreases (not reported). We found that

the magnitude of the negative deviation (̂  0) has a large impact on the probability of a price increase,

but almost no impact on the likelihood of price decreases. The reverse is true for positive deviations.
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of ̂ and the derivative of Λ̂ (̂) over the distribution of ̂.

Table 6 shows our estimates of A and E when we perform such an exercise. We recover

the slope of Λ̂ (̂) separately for positive and negative deviations with linear regressions

using the point estimates for each 1-percentage point bin in figure 7 as observations. Absent

real rigidities, the index of macroeconomic flexibility ranges from 013 for reference prices to

037 for posted prices. About 30 percent of these index values is due to the extensive margin,

making this margin an economically important channel of price adjustment irrespective

of whether one uses posted, regular, or reference prices. If we instead assume moderate

real rigidities ( = 06) similar to those estimated on retail data by Burstein and Hellwig

(2007), then the estimated indexes of macroeconomic flexibility roughly halve. Although

these results imply greater macro price stickiness, it does not alter our view about the

importance of the extensive margin to .

There is admittedly much uncertainty surrounding these estimates. Importantly, they

rely on an imperfect measure of the true deviation from individual reset prices. Whether

this measure leads us to underestimate or overestimate the slope of the adjustment hazard

is unclear. On the one hand, by omitting idiosyncratic factors, we add noise to the deviation

that could bias downward the slope of the adjustment hazard. The importance of the

extensive margin in table 6 is also near or below the lower bounds derived in section 3 in

the case of adjustment to large shocks. On the other hand, sluggish adjustment of the price

of local competitors to shocks could bias upward the slope of the nonparametric adjustment

hazard function. For these reasons, we see these estimates as suggestive that the extensive

margin is an important channel for macro price adjustment, but more work remains to be

done to refine these estimates and broaden the set of products to which they apply.

5 Conclusion

In this paper, we have sought to connect micro price stickiness and macro price stickiness by

distinguishing between price changes whose timing is determined ahead of shocks and price

changes whose timing is altered by shocks. We have discussed the assumptions under which

observed price behavior can be used to infer the importance of each type of price changes for

aggregate inflation. We have found compelling evidence that some shocks alter the timing

of price changes, contributing significantly to the flexibility of the price level. Using the

terminology of Caballero and Engel (2007), this evidence of state-dependent behavior points

to an important role for the extensive margin in the initial response of inflation to shocks.

Our findings have several implications for macroeconomic modelling. First, researchers

primarily interested in fitting macro facts should be careful when claiming that their models
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are consistent with micro facts. The current generation of macro models is still a long way

from capturing the richness of pricing strategies employed by firms; some simplification is

unavoidable. But, as our findings make clear, models featuring no extensive margin abstract

from an economically important channel of adjustment and their calibration should take that

aspect into account. Our results also suggest that micro-level price stickiness is at most a

moderate contributor to the transmission mechanism. Moreover, rapid initial pass-through

of the shocks covered in our study seems mostly incompatible with the presence of strong real

rigidities, a conclusion echoing that of Bils and Klenow (2004) and Bils et al. (forthcoming)

based on the dynamics of sectoral U.S. CPI inflation series.

Obviously, our work leaves several questions unanswered. We have considered only a

subset of sectoral and aggregate shocks that share the characteristic of being relatively easy

to identify. Micro price adjustment to other types of aggregate shocks –notably monetary

shocks– could be more sluggish. Also, there continues to be a lack of microeconomic data on

both costs and local competition, which could help refine estimates of individual reset prices

between price adjustment periods. Moreover, micro-level price evidence on the importance

of real rigidities, which is important for refining estimates of adjustment along the extensive

margin, remains constrained by limited data availability.
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Appendix A. Data Description

The datasets used in this paper have been described in earlier work, so we shall concentrate

on the features that are most relevant for our analysis.

Mexican CPI Database

Gagnon (2009) constructed the Mexican micro CPI dataset for the period January 1994

to December 2004 using monthly price and item substitution lists published by the Bank

of Mexico. We extended his sample period back to July 1993 and forward to December

2010. Price lists were not available electronically for 1993; the observations were manually

coded by a data entry firm using scans of the original documents made by Mexico’s Archivo

General de la Nación.

The dataset excludes product categories whose prices are regulated (e.g., taxi fares, phone

services, gasoline, and tuition fees) or reported as a sectoral index (e.g., housing, utilities,

and insurance). The sample covers 54 percent of Mexican consumer price expenditures prior

to the basket update of July 2002, and about 61 percent thereafter. The number of usable

monthly observations ranges from 21,000 in 1993 to 57,000 in 2010. Prices are inclusive of

sales as long as these sales are conditional on the purchase of a single item. There is no

flag in the dataset indicating that an item is on sale but the application of filters to remove

V-shaped price patterns suggests that sales are less prominent than in the U.S. CPI.

U.S. CPI Database

The Bureau of Labor Statistics (BLS) makes available most of the micro data behind

the official U.S. CPI on a restricted-access basis through its CPI-Research Database. This

database excludes housing rents, whose index is computed separately due to differences in

sampling and treatment. With the exceptions of food, energy, and a few additional product

categories, item prices are collected every other month in all metropolitan areas but the

largest three (New York City, Los Angeles, and Chicago), where price collection takes place

monthly for all items. The database starts in January 1988 and we extracted data through

December 2009. We restrict the sample to the largest three metropolitan areas, leaving us

with between 12,000 and 19,000 observations per month. The individual observations are

weighted using the same procedure and product category weights as BKM.21 We classified the

product categories according to the United Nations Classification of Individual Consumption

According to Purpose (COICOP) in order to compute statistics for special groups of products.

For additional details on this dataset, see the BLS Handbook of Methods, Bils and Klenow

(2004), Klenow and Kryvtsov (2008), and Nakamura and Steinsson (2008).

SymphonyIRI Group Scanner Database

21We thank them for sharing these weights with us.
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The IRI Marketing dataset includes scanner data from U.S. grocery stores and drugstores.

Its content is detailed in Bronnenberg, Kruger, and Mela (2008). An observation corresponds

to a specific item sold by a given store in a particular week. Available information includes

total revenue from the sale of the item and the number of units sold. As is customary with

scanner data, the unit price is obtained by dividing total revenue by the quantity sold. The

number of usable observations in the dataset is enormous at about 300 billion per year.

The dataset has several appealing features. First, observations are collected frequently.

Second, the sample covers a relatively long time span, January 2001 to December 2007, that

allows us to look at price dynamics. Third, information is available for 31 food and personal

care product categories, such as beer, household cleaners, and milk. Fourth, the geographical

coverage –50 U.S. markets– is more extensive than that of other scanner datasets used in

the literature, and includes several retailers within each market. To study pricing decisions in

competitive environments, we restrict the sample to Boston, Chicago, Houston, Los Angeles,

New York, Philadelphia, San Diego, and Washington D.C.. These markets have between 30

and 97 stores. One limitation of the dataset is that it does not contain information about

costs.

We applied a number of filters to the data to make them suitable for our analysis. First,

we censored fractional price observations. For various reasons (use of membership cards,

price changes during the week, etc.), dividing total revenue by the number of units sold

occasionally yields a price with fractional cents (e.g., $37485). For New York City, fractional

prices represent less than 02 percent of posted prices, and a negligible proportion of reference

prices; censoring fractional prices is thus mostly inconsequential for our results. Second, in

some applications, we filtered out temporary sales, which we define as a price drop that

is offset within two weeks by a price increase of equal magnitude. Third, we considered

a slight variant of the reference price filter of Eichenbaum et al. (2011). Specifically, the

reference price of a given item in week  corresponds to the mode of the posted price over a

13-week centered window. Fourth, we converted weekly statistics to a monthly frequency by

selecting weekly observations encompassing the 15th day of every month. Fifth, we require a

minimum of 10 observations (stores) in constructing the average price of local competitors,

̄−. Finally, an item must be present in the sample at least 24 months to be included in

the analysis.
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Appendix B. Adjustment along the Intensive Margin

The frequency of price change is approximately equal to the intensive margin and, provided

real rigidities are not too strong, offers a lower bound on the index of macroeconomic flexi-

bility. For the revelation principle to apply, only price adjustments coinciding with a reopti-

mization should be comprised in the intensive margin. For this reason, we report alternative

measures of the average frequency that exclude sales and nonreference prices changes. These

alternative measures provide a range of estimates for the intensive margin under widely used

assumptions regarding the set of price adjustments coinciding with a reoptimization.

The top of table 1 reports the average frequency of price changes in the CPI excluding

shelter in the three largest U.S. metropolitan areas. According to Klenow and Kryvtsov

(2008), items representing 362 percent of consumer expenditures experience a price adjust-

ment every month. This statistic suggests that, absent strong real rigidities, nominal shocks

are initially passed through rapidly to individual reset prices even if no adjustment along the

extensive margin were to take place. The average frequency of price changes slides to a still-

elevated 299 percent when one excludes price changes flagged by the BLS as related to sales

and promotions. Filtering out nonreference price changes is more consequential. Klenow and

Malin (2011) find an average frequency of 146 percent when they define the reference price

as the modal price over a 13-month window centered on the current month, implying that

reference prices are considerably stickier than regular prices. Whether one should ignore all

nonreference price changes is debatable, however. Klenow and Malin (2011) show that price

changes exhibit considerable novelty: Every month, the price of a quarter of items in the

U.S. CPI is adjusted to a level not seen over the previous 12 months. Also, some frequently

occurring prices could be chosen because consumers find them more attractive than others

(e.g., $9.99 versus $10.47), in which case some of the stickiness in references prices could

be due to features of consumer demand rather than rigidity in pricing strategy.22 Finally,

Eichenbaum et al. (2011) show that replacement costs also exhibit reference behavior. It

is thus plausible that reference price behavior reflects to some degree a similar feature of

individual reset prices.

In the bottom of table 1, we present related statistics for the IRI Marketing database.

Although its product coverage is restricted to food and personal care product, the frequency

statistics are similar to the U.S. CPI. The monthly average frequency is 372 percent for

posted prices and 256 percent after filtering out V-shaped price drops. Monthly reference

prices changes, at 135 percent, are less frequent but, as was the case with CPI prices, scanner

prices exhibit considerable novelty.

22See Levy et al. (2011) for evidence that some digits are overrepresented in posted prices.
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Appendix C. The Extensive Margin and Bils-Klenow-

Malin Reset Price Inflation

Imputing individual reset prices between adjustment periods is a delicate task. With only

price information at hand, one does not know if an item’s price change is releasing pressure

generated by a single large shock or accumulated gradually from various sources. In a recent

paper, Bils, Klenow, and Malin (forthcoming, henceforth “BKM”) propose a method that

uses the behavior of items changing their price to infer the amount of price pressure building

up for other items in the sample. The method works under specific assumptions about the

data-generating process that commonly hold in models in which the timing of price changes is

exogenous. It is employed to recover a time series for the common component of individual

reset price inflation whose behavior is then used to assess the empirical relevance of the

initial assumptions. This appendix briefly reviews this method, shows how the identification

is informed by the CE decomposition, and then discusses the challenges of applying it to

assess the importance of adjustment along the extensive margin.

BKM’s Identification Method

BKM estimate item ’s individual reset price in period  as follows

∗
 =

(
 if  6= −1

∗−1 + ∗
 if  = −1

 (10)

The individual reset prices of an item whose posted price is unchanged is obtained by incre-

menting the previous-period imputed value by an estimate of aggregate reset price inflation,

∗
 . This estimate corresponds to the average change in ∗

 of items whose posted

price is adjusted in period . A time series for ∗
 is constructed by initializing individual

reset prices and then recursively computing ∗
 . The dependence of ∗

 on the ini-

tial conditions quickly fades as price adjustments occur. Equation (10) can be alternatively

written as

∗
 =

(
 if  6= −1

− +
P−1

=0 
∗
− if  = −1



where  is the number of periods since item ’s last price adjustment. This data-generating

process differs from that assumed in equation (1), which implies that item’s  individual reset
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price evolves according to

∗ =

(
 if  6= −1

− +
P−1

=0 
∗
− +

P−1
=0 − if  = −1

 (11)

The term
P−1

=0 − captures the accumulation of idiosyncratic shocks since the last price

adjustment. Comparing the above two equations, it is apparent that BKM’s method ab-

stracts from the presence of idiosyncratic shocks. These shocks play no role in aggregate

price dynamics for models in which the timing of adjustments is exogenous to the firms, such

as the popular Calvo (1983) and Taylor (1980) models. As we now illustrate, abstracting

from idiosyncratic shocks can create a wedge between ∗
 and ∗ when these shocks are

present and firms adjust along the extensive margin.

BKM’s Identification and the CE Decomposition: an Approximation

For ease of exposition, consider an economy that starts in a steady state with ∗
 = ∗ =

̄ and in which actual individual reset prices evolve according to equation (11). Suppose

that all individual reset prices are perturbed by a small one-time impulse ∆ prior to price

adjustment decisions in period . Let  and  denote the initial response of the average

frequency and size of (nonzero) price changes, respectively. As in section 3.1, we denote the

variables under the counterfactual scenario of no shock using a “˜”. The inflation innovation

attributable to the shock in the initial period can be written as

∆ =   −f f
Klenow and Kryvtsov (2008) show that nearly all the variation in U.S. CPI inflation over the

past two decades is attributable to movements in  while movements in  are relatively

small and only weakly correlated with inflation. Using this observation, we approximate 

and f by the average frequency, , to get
∆ ≈ 

³
 −f´ =  ∆∗

 

The last equality uses the fact that BKM’s procedure imputes any movement in the average

size of nonzero price changes to a movement in aggregate reset price inflation. Finally, using

equation (4) and A ≈ , we obtain

∆∗
 ≈

µ
1 +

E
A

¶
∆ (12)
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In short, BKM’s method overestimates the innovation to reset price inflation by a factor that

depends on the importance of the extensive margin relative to the intensive margin. In the

absence of adjustment along the extensive margin (E = 0), ∗
 would be an unbiased

estimator of ∗ . One implication is that 
∗
 is overly volatile relative to ∗ whenever

EA  0. Another implication is that the extra (EA) ∆ wrongly imputed to the

individual reset price of nonadjusters in period  needs to be offset in subsequent periods

by increments to ∗
+ summing up to negative (EA) ∆. A rapid offsetting can help

generate uncorrelated or negatively persistent measured aggregate reset price inflation, as

found by BKM and Gopinath and Itskhoki (2011). Figure 10 illustrates these effects in a

baseline menu-cost model à la Golosov and Lucas (2007) in which EA is about 2.
23 Upon

impact of a 1-percent shock to individual reset prices, the BKM procedure imputes a change

in individual reset prices of nonadjusters of about 3 percent. The procedure quickly corrects

this overestimation in subsequent periods as firms responding to the shock with a delay

release less price pressure than initially imputed.

We stress that the bias in BKM’s method is not due to the extensive margin in itself but

rather to the joint presence of idiosyncratic shocks and the asymmetric effect of the shock on

the probability of price change of items with positive and negative deviations.24 A positive

aggregate shock triggers the release of price pressure due to idiosyncratic factors through the

selection effect, but BKM’s procedure is not designed to disentangle that pressure from that

accruing to the common component of individual reset prices.

BKM are well aware that their identifying assumptions do not hold for general data-

generating processes. Indeed, their objective is precisely to test the empirical relevance

of their assumptions by studying the behavior of reset price inflation series calculated on

the micro data. In their 2009 NBER working paper, they pursue this objective notably

by applying their method to series generated from baseline Calvo and menu-cost models

calibrated to match CPI inflation dynamics. They then compare the predicted reset price

23The model assumes a symmetric  band, a process for individual reset prices as in equation (11), and

normally distributed idiosyncratic shocks. Aggregate reset price inflation is set to the average monthly U.S.

CPI inflation excluding shelter from 1988 to 2007. The width of the  band and the variance of idiosyncratic

innovations are calibrated to match an average frequency and average absolute magnitude of nonzero price

changes of 25 percent and 10 percent, respectively.
24In particular, BKM’s procedure is consistent when the data are generated from the Caplin and Spulber

(1987) model for which all price adjustments occur along the extensive margin through the selection effect.

That model has no idiosyncratic shocks, so there is no confusion that price adjustments reflect solely price

pressure attributable to aggregate shocks. The method is also consistent when the data are generated from a

Calvo model with idiosyncratic shocks for which the exogenous probability of price changes varies in response

to aggregate conditions. Although this model has no selection effect, it still has an extensive margin due

to variation in the frequency of price changes. In both of these examples, the frequency of price changes is

sensitive to the size of the shock. The approximation of the frequency of price changes by a constant used

to derive equation (12) would not be appealing in these environments.

39



inflation series to that estimated on CPI micro data. The estimated series is highly volatile

and exhibits either no or negative persistence. These features are most closely replicated by

their baseline menu-cost model with no strategic complementarities. This model entails a

major role for adjustment along the extensive margin in explaining U.S. inflation dynamics,

a conclusion that echoes the findings obtained using the alternative approaches in our paper.

However, at least three factors other than the extensive margin could create spurious

volatility and negative persistence in ∗
 . As with E  0 discussed above, these factors

imply that the behavior of price adjusters is not representative of that of nonadjusters. First,

the method is sensitive to sample size because it leverages the behavior of a minority of price

adjusters to infer the price pressure accruing to all items. Any sampling uncertainty or coding

mistakes in the subset of adjusters will thus be imputed to nonadjusters. Second, sectoral

shocks may be confused with aggregate shocks. BKM deal with this issue by estimating

separate reset price inflation series for 64 groups of products, but we see a risk of accentuating

biases due to sample size. Third, the response of individual reset prices to aggregate shocks

may be asymmetric across items in ways that correlate with the frequency of price changes.

For instance, Gopinath and Itskhoki (2010) show that frequent adjusters pass-through a

larger share of exchange rate movements than infrequent adjusters in a sample of U.S. trade

prices. Kara (2011) provides a theoretical example in which frequent adjusters are more

responsive to transitory shocks than infrequent adjusters. We believe that further work

on these aspects could help shed further light on the importance of adjustment along the

extensive margin for U.S. inflation dynamics.
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Table 1: Standard measures of the intensive margin in the U.S. CPI and the IRI Marketing

database

U.S. CPI Weekly frequency Monthly frequency Sample period

Database (percent) (percent)

  n.a. 36.2 1/1988 − 1/2005

  n.a. 29.9 1/1988 − 1/2005

 

13-  n.a. 14.6 1/1988 − 10/2009

  n.a. 25.0 1/1988 − 10/2009

IRI Marketing Weekly frequency Monthly frequency Sample period

Database (percent) (percent)

  22.6 37.2 1/2001 − 12/2007

  18.1 25.6 1/2001 − 12/2007

 

13-  4.0 13.5 1/2001 − 12/2007

  n.a. 23.8 1/2001 − 12/2007

Notes: (a) Source: Klenow and Kryvtsov (2008). Regular prices correspond to posted prices

excluding sales and promotions as flagged by the BLS. (b) Source: Klenow and Malin (2011).

Novel prices are defined as prices that have not been observed for at least 12 months. An

item’s reference price is defined as the modal price over a centered 13-month window. (c)

Regular prices exclude price drops returning to their original level within 2 weeks. The

reference price is defined as the modal price over a centered window.
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Table 2: Lower bounds on the share of initial pass-through attributed to adjustment along

the extensive margin during the late-1994 Mexican peso devaluation

Initial Share attributed to

pass-through extensive margin

Bound method (∆∆, percent) (percent)

Full pass-through (∆ = 50%)

posted prices 84.7 70.5

unprocessed food 72.9 47.4

processed food 85.4 75.2

nonenergy industrial goods 95.9 84.8

services 57.8 84.5

Full pass-through (forecast revision)

posted prices 30.8 18.9

unprocessed food 26.5 -44.9

processed food 31.0 31.7

nonenergy industrial goods 34.9 58.1

services 21.0 57.4

Calvo +

posted prices 67.5 63.0

unprocessed food 60.1 36.2

processed food 83.9 74.7

nonenergy industrial goods 64.2 77.3

services 46.2 80.6

Notes: The “full pass-through” method first assumes full immediate pass-through of a 50%

devaluation to individual reset price based on a total import content of consumption equal

to 109%, as estimated by Burstein et al. (2005). It then assumes that individual reset

prices rose as much as the revision to the mean inflation forecast for the calendar year 1995

observed in a Bank of Mexico survey at the turn of 1995. The “Calvo+” method assumes

no real rigidities and the random selection of items whose price adjustment is triggered by

the shock.
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Table 3: Lower bounds on the share of initial pass-through attributed to adjustment along

the extensive margin during the January 2001 and April 1995 VAT hikes

Initial Share attributed to

pass-through extensive margin

(∆∆, percent) (percent)

January 2010 hike

 − 

posted prices 72.3 75.2

nonenergy industrial goods 83.6 75.3

services 34.8 66.2

 +

posted prices 266.9 93.3

nonenergy industrial goods 104.0 80.1

services −38.8 130.3

April 1995 hike

 − 

posted prices 62.8 23.5

nonenergy industrial goods 67.8 15.0

services 41.3 24.7

+

posted prices −249.1 119.3

nonenergy industrial goods 134.4 57.1

services −356.1 108.7

Notes: The “full pass-through” method full immediate pass-through of the VAT hike to

individual reset prices of taxable items. The “Calvo+” method assumes no real rigidities

and the random selection of items whose price adjustment is triggered by the shock. Only

taxable items were used in the computation of the statistics.
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Table 4: Probability of Price Adjustment

New York City Los Angeles Boston

Salty Carbonated Frozen dinner

snacks beverages entrees

(1) (2) (3)

Regressor Coef.

̂
neg
 

neg
1 −1.220

(0.029)
−0.979
(0.018)

−0.891
(0.053)

̂
pos
 

pos
1 0.665

(0.035)
0.574
(0.015)

0.495
(0.042)

2 0.11 0.06 0.07

 1,056,906 938,349 396,471

Notes: Fixed effect (store-UPC) linear probability regression model for the monthly change

in reference prices across different categories and markets:

(∆ 6=0) = 0 + 
neg
1 ̂

neg
 + 

pos
1 ̂

pos
 +  0Γ+ 

where (∆ 6=0) is an indicator variable that a reference price change has occurred, ̂
neg
 equals

̂ if ̂  0 and zero otherwise (with ̂
pos
 similarly defined for positive deviations), and

 is a vector of control variables that includes monthly dummies, the age of the price,

and a measure of store size (total yearly revenues). Standard errors (in parentheses) are

corrected for heteroskedasticity and clustered at the store level.  is the number of monthly

observations from January 2001 to December 2007.
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Table 5: Probability of a Price Adjustment by Spell Duration

New York City Los Angeles Boston

Salty Carbonated Frozen dinner

snacks beverages entrees

(4) (5) (6)

Regressor Coef.

̂
neg
 

neg
1 −1.263

(0.030)
−1.084
(0.021)

−0.928
(0.062)

̂
pos
 

pos
1 0.698

(0.038)
0.586
(0.019)

0.576
(0.050)

(4≤8) ̂
neg
 

neg
2 0.217

(0.025)
0.180
(0.023)

0.154
(0.092)

(4≤8) ̂
pos
 

pos
2 −0.008

(0.018)
−0.031
(0.023)

−0.020
(0.045)

(8≤12) ̂
neg
 

neg
3 0.049

(0.047)
0.220
(0.022)

0.112
(0.116)

(8≤12) ̂
pos
 

pos
3 -0.014

(0.023)
0.068
(0.035)

−0.155
(0.067)

(12) ̂
neg
 

neg
4 0.160

(0.024)
0.337
(0.023)

−0.003
(0.088)

(12) ̂
pos
 

pos
4 -0.160

(0.024)
−0.061
(0.024)

−0.203
(0.048)

2 0.12 0.06 0.06

 1,056,906 938,349 396,471

Notes: Fixed effect (store-UPC) linear probability regression model for the monthly change

in reference prices across different categories and markets:

(∆ 6=0) = 0+
neg
1 ̂

neg
 +

pos
1 ̂

pos
 +

4X
=2


neg
 (∈Υ) ̂

neg
 +

4X
=2


pos
 (∈Υ) ̂

pos
 +

0
Γ+

where (∆ 6=0), ̂
neg
 , and ̂

pos
 have been defined in Table 4. (∈Υ) is an indicator variable

that the duration of the price spell  belongs to age group Υ, where the age groups

considered are 4 to 8 months, 9 to 12 months and more than 12 months.  is a vector of

control variables that includes monthly dummies and a measure of store size (total yearly

revenues). Standard errors (in parentheses) are corrected for heteroskedasticity and clustered

at the store level.  is the number of monthly observations from January 2001 to December

2007.
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Table 6: Index of Macroeconomic Flexibility

A E 


 = 0  = 06

  027 010 037 019

  018 008 025 012

  009 004 013 006

Notes: This table reports estimates of the intensive and the extensive margins based on

equation 7 for the IRI Marketing dataset. We use deviations from the average price of local

competitors to proxy for deviations from individual reset prices and to estimate a nonpara-

metric adjustment hazard function. The index of macroeconomic flexibility is computed

given no real rigidities ( = 0) and moderate real rigidities ( = 06).
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Figure 1: Initial impact of the Mexican peso devaluation on the distribution of price changes
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Notes: This figure shows the distribution of nonzero price changes in the Mexican CPI

observed in January 1995 (the “actual” distribution) and in January 1994 (the “counterfac-

tual” distribution) for special groups of products. Observations are grouped into bins of 2.5

percentage points and weighted by their relative importance in the CPI. The inserts in the

panels report the monthly frequency of price changes.
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Figure 2: Initial impact of the January 2010 1-percent hike in the Mexican VAT on the

distribution of price changes
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Notes: This figure shows the distribution of nonzero price changes in the Mexican CPI ob-

served in January 2010 (the “actual” distribution) and an average of distributions observed

in January from 2003 to 2007 (the “counterfactual” distribution) for special groups of prod-

ucts. Observations are grouped into bins of 2.5 percentage points and weighted by their

relative importance in the CPI. Inserts in the panels report the monthly frequency of price

changes.
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Figure 3: Initial impact of the April 1995 5-percent hike in the Mexican VAT on the distri-

bution of price changes
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Notes: This figure shows the distribution of nonzero price changes in the Mexican CPI

observed in April 1995 in regions subject to the VAT hike (the “actual” distribution) and in

regions not subject to the VAT hike (the “counterfactual” distribution) for special groups of

products. Observations are grouped into bins of 2.5 percentage points and weighted by their

relative importance in the CPI. Inserts in the panels report the monthly frequency of price

changes.
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Figure 4: Distribution of nonzero price changes in the Mexican CPI conditional on a price

change in April 1995
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Notes: This figure shows the distributions of first nonzero price changes in the Mexican CPI

conditional on a nonzero price change in April 1995 and the duration (in months). The

upper-left corner of each panel reports the mean (in percent), its standard deviation (in

percentage points), and the cumulated inflation in the special group since April 1995 (in

percent). 50



Figure 5: Distribution of nonzero posted price changes in the U.S. CPI conditional on the

duration since the last price change
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Notes: This figure shows the distribution of nonzero posted price changes in the U.S. CPI

conditional on the duration (in months) since the last price change. The sample period is

January 1988 to August 2010.
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Figure 6: Deviation from the average posted price of competitors and individual price ad-

justments
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Notes: The upper and lower panels show the distribution of deviations from the average

price of local competitors, computed at the UPC-market level in the IRI Marketing dataset,

before and after removing item fixed effects to account for permanent differences in the level

of prices across stores.
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Figure 7: Deviation from the average reference price of competitors and individual price

adjustments
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Notes: The upper panel shows the average age of monthly posted, regular, and reference

prices in the IRI Marketing dataset conditional on the (demeaned) deviation from the cor-

responding average price of local competitors. The middle panel shows the fraction of items

experiencing a price change during the month conditional on the deviation. The lower panel

shows the median difference between the observed price change (∆) and the imputed price

pressure (−̃), along with the 10th and 90th percentiles differences.
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Figure 8: Nonparametric adjustment hazard function for four product categories
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Notes: The figure shows the monthly probability of observing a change in the reference price

conditional on the (demeaned) deviation from the average reference price of local competitors

for four product categories in the IRI Marketing dataset.
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Figure 9: Nonparametric adjustment hazard conditional on age and alternative measures of

local competitition
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Notes: The upper panel shows the probability of a reference price change conditional on

alternative measures of the (demeaned) deviation from the prices of local competitors. The

measures use either all other stores (“All stores”), stores belonging to competing chains

(“Competing chains”), or retailers that have adjusted their price over the current or previous

six months (“Recent adjusters”). The lower panel shows the probability of a reference price

change as a function of the deviation from the average price of competitors, conditional on

the duration since the last price change. The data source is the IRI Marketing dataset.
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Figure 10: Estimated aggregate reset price inflation using BKM’s methodology in response

to a 1-percent shock to actual aggregate reset price inflation (menu-cost model)
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Notes: This figure applies BKM’s methodology for identifying aggregate reset price inflation

to the study of a 1-percent jump in the level of individual reset prices in a baseline menu-cost

model. The model assumes a symmetric  band, a process for individual reset prices as

in equation (11), and normally distributed idiosyncratic shocks. The model is calibrated

to match an average frequency of price changes of 25 percent and an average size of price

changes of 10 percent.
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